SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:gu ;pers:(Blennow Kaj 1958);pers:(Suarez Calvet M.)"

Sökning: LAR1:gu > Blennow Kaj 1958 > Suarez Calvet M.

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akinci, M., et al. (författare)
  • Prepandemic Alzheimer Disease Biomarkers and Anxious-Depressive Symptoms During the COVID-19 Confinement in Cognitively Unimpaired Adults
  • 2022
  • Ingår i: NEUROLOGY. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 99:14, s. E1486-E1498
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives Increased anxious-depressive symptomatology is observed in the preclinical stage of Alzheimer disease (AD), which may accelerate disease progression. We investigated whether beta-amyloid, cortical thickness in medial temporal lobe structures, neuroinflammation, and sociodemographic factors were associated with greater anxious-depressive symptoms during the COVID-19 confinement. Methods This retrospective observational study included cognitively unimpaired older adults from the Alzheimer's and Families cohort, the majority with a family history of sporadic AD. Participants performed the Hospital Anxiety and Depression Scale (HADS) during the COVID-19 confinement. A subset had available retrospective (on average: 2.4 years before) HADS assessment, amyloid [F-18] flutemetamol PET and structural MRI scans, and CSF markers of neuroinflammation (interleukin-6 [IL-6], triggering receptor expressed on myeloid cells 2, and glial fibrillary acidic protein levels). We performed multivariable linear regression models to investigate the associations of prepandemic AD-related biomarkers and sociodemographic factors with HADS scores during the confinement. We further performed an analysis of covariance to adjust by participants' prepandemic anxiety-depression levels. Finally, we explored the role of stress and lifestyle changes (sleep patterns, eating, drinking, smoking habits, and medication use) on the tested associations and performed sex-stratified analyses. Results We included 921 (254 with AD biomarkers) participants. beta-amyloid positivity (B = 3.73; 95% CI = 1.1 to 6.36; p = 0.006), caregiving (B = 1.37; 95% CI 0.24-2.5; p = 0.018), sex (women: B = 1.95; 95% CI 1.1-2.79; p < 0.001), younger age (B = -0.12; 95% CI -0.18 to -0.052; p < 0.001), and lower education (B = -0.16; 95% CI -0.28 to -0.042; p = 0.008) were associated with greater anxious-depressive symptoms during the confinement. Considering prepandemic anxiety-depression levels, we further observed an association between lower levels of CSF IL-6 (B = -5.11; 95% CI -10.1 to -0.13; p = 0.044) and greater HADS scores. The results were independent of stress-related variables and lifestyle changes. Stratified analysis revealed that the associations were mainly driven by women. Discussion Our results link AD-related pathophysiology and neuroinflammation with greater anxious-depressive symptomatology during the COVID-19-related confinement, notably in women. AD pathophysiology may increase neuropsychiatric symptomatology in response to stressors. This association may imply a worse clinical prognosis in people at risk for AD after the pandemic and thus deserves to be considered by clinicians.
  •  
2.
  • Alemany, S., et al. (författare)
  • Associations between air pollution and biomarkers of Alzheimer's disease in cognitively unimpaired individuals
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120. ; 157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air quality contributes to incidence of Alzheimer's disease (AD) although the underlying neurobiological mechanisms are unclear. This study was aimed to examine the association between air pollution and concentrations of cerebrospinal fluid (CSF) AD biomarkers and amyloid-beta (A beta) deposition. Participants and methods The sample included 156 cognitively unimpaired adults aged 57 years (61 at biomarkers assessment) with increased risk of AD from the ALFA + Study. We examined CSF levels of A beta 42, A beta 40, p-Tau, t-Tau, neurofilament light (NfL) and cerebral amyloid load (Centiloid). A Land Use Regression model from 2009 was used to estimate residential exposure to air pollutants including nitrogen dioxide (NO2,) and particulate matter (PM2.5, PM2.5 abs, PM10). This model was considered a surrogate of long-term exposure until time of data collection in 2013-2014. Participants have resided in the same residence for at least the previous 3 years. Multiple linear regression models were used to estimate associations between air pollutants and biomarkers. The effect modification by CSF A beta status and APOE-epsilon 4 carriership was also assessed. Results: A consistent pattern of results indicated that greater exposure to NO2 and PM2.5 absorbance was associated with higher levels of brain A beta deposition, while greater exposure to PM10 and PM(2.5)was associated with higher levels of CSF NfL. Most associations were driven by individuals that were A beta-positive. Although APOE-epsilon 4 status did not significantly modify these associations, the effect of air pollutants exposure on CSF NfL levels was stronger in APOE-epsilon 4 carriers. Conclusion: In a population of cognitively unimpaired adults with increased risk of AD, long-term exposure to air pollution was associated with higher levels in biomarkers of AD pathology. While further research is granted to elucidate the mechanisms involved in such associations, our results reinforce the role of air pollution as an environmental risk factor for AD.
  •  
3.
  • Arenaza-Urquijo, E. M., et al. (författare)
  • Association of years to parent's sporadic onset and risk factors with neural integrity and Alzheimer biomarkers
  • 2020
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 95:15, s. E2065-E2074
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To evaluate the hypothesis that proximity to parental age at onset (AAO) in sporadic Alzheimer disease (AD) is associated with greater AD and neural injury biomarker alterations during midlife and to assess the role of nonmodifiable and modifiable factors. Methods This observational study included 290 cognitively unimpaired (CU) participants with a family history (FH) of clinically diagnosed sporadic AD (age 49-73 years) from the Alzheimer's and Families (ALFA) study. [F-18]flutemetamol-PET standardized uptake value ratios, CSF beta-amyloid(42/40) ratio, and phosphorylated tau were used as AD biomarkers. Hippocampal volumes and CSF total tau were used as neural injury biomarkers. Mental and vascular health proxies were calculated. In multiple regression models, we assessed the effect of proximity to parental AAO and its interaction with age on AD and neural injury biomarkers. Then, we evaluated the effects of FH load (number of parents affected), sex, APOE epsilon 4, education, and vascular and mental health. Results Proximity to parental AAO was associated with beta-amyloid, but not with neural injury biomarkers, and interacted with sex and age, showing that women and older participants had increased beta-amyloid. FH load and APOE epsilon 4 showed independent contributions to beta-amyloid load. Education and vascular and mental health proxies were not associated with AD biomarkers. However, lower mental health proxies were associated with decreased hippocampal volumes with age. Conclusion The identification of the earliest biomarker changes and modifiable factors to be targeted in early interventions is crucial for AD prevention. Proximity to parental AAO may offer a timeline for detection of incipient beta-amyloid changes in women. In risk-enriched middle-aged cohorts, mental health may be a target for early interventions.
  •  
4.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:5, s. 1913-1924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. Methods In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (A beta 42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF A beta 42/p-tau ratio. Results All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF A beta 42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). Discussion Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. Highlights Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts.
  •  
5.
  • Bellaver, B., et al. (författare)
  • Blood-brain barrier integrity impacts the use of plasma amyloid-beta as a proxy of brain amyloid-beta pathology
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:9, s. 3815-3825
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION Amyloid-beta (A beta) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers.METHODS We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography A beta, p-tau, and albumin measures.RESULTS Plasma A beta(42/40) better identified CSF A beta(42/40) and A beta-PET positivity in individuals with high BBB permeability. An interaction between plasma A beta(42/40) and BBB permeability on CSF A beta(42/40) was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma A beta was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels.DISCUSSION These findings suggest that BBB integrity may influence the performance of plasma A beta, but not p-tau, biomarkers in research and clinical settings.
  •  
6.
  • Cacciaglia, R., et al. (författare)
  • Age, sex and APOE-epsilon 4 modify the balance between soluble and fibrillar beta-amyloid in non-demented individuals: topographical patterns across two independent cohorts
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid (A beta) pathology is the earliest detectable pathophysiological event along the Alzheimer's continuum, which can be measured both in the cerebrospinal fluid (CSF) and by Positron Emission Tomography (PET). Yet, these biomarkers identify two distinct A beta pools, reflecting the clearance of soluble A beta as opposed to the presence of A beta fibrils in the brain. An open question is whether risk factors known to increase Alzheimer's' disease (AD) prevalence may promote an imbalance between soluble and deposited A beta. Unveiling such interactions shall aid our understanding of the biological pathways underlying A beta deposition and foster the design of effective prevention strategies. We assessed the impact of three major AD risk factors, such as age, APOE-epsilon 4 and female sex, on the association between CSF and PET A beta, in two independent samples of non-demented individuals (ALFA: n = 320, ADNI: n = 682). We tested our hypotheses both in candidate regions of interest and in the whole brain using voxel-wise non-parametric permutations. All of the assessed risk factors induced a higher A beta deposition for any given level of CSF A beta 42/40, although in distinct cerebral topologies. While age and sex mapped onto neocortical areas, the effect of APOE-epsilon 4 was prominent in the medial temporal lobe, which represents a target of early tau deposition. Further, we found that the effects of age and APOE-epsilon 4 was stronger in women than in men. Our data indicate that specific AD risk factors affect the spatial patterns of cerebral A beta aggregation, with APOE-epsilon 4 possibly facilitating a co-localization between A beta and tau along the disease continuum.
  •  
7.
  • Cacciaglia, R., et al. (författare)
  • Genotypic effects of APOE-epsilon 4 on resting-state connectivity in cognitively intact individuals support functional brain compensation
  • 2022
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 33:6, s. 2748-60
  • Tidskriftsartikel (refereegranskat)abstract
    • The investigation of resting-state functional connectivity (rsFC) in asymptomatic individuals at genetic risk for Alzheimer's disease (AD) enables discovering the earliest brain alterations in preclinical stages of the disease. The APOE-epsilon 4 variant is the major genetic risk factor for AD, and previous studies have reported rsFC abnormalities in carriers of the epsilon 4 allele. Yet, no study has assessed APOE-epsilon 4 gene-dose effects on rsFC measures, and only a few studies included measures of cognitive performance to aid a clinical interpretation. We assessed the impact of APOE-epsilon 4 on rsFC in a sample of 429 cognitively unimpaired individuals hosting a high number of epsilon 4 homozygotes (n = 58), which enabled testing different models of genetic penetrance. We used independent component analysis and found a reduced rsFC as a function of the APOE-epsilon 4 allelic load in the temporal default-mode and the medial temporal networks, while recessive effects were found in the extrastriate and limbic networks. Some of these results were replicated in a subsample with negative amyloid markers. Interaction with cognitive data suggests that such a network reorganization may support cognitive performance in the epsilon 4-homozygotes. Our data indicate that APOE-epsilon 4 shapes the functional architecture of the resting brain and favor the idea of a network-based functional compensation.
  •  
8.
  • Cumplido-Mayoral, I., et al. (författare)
  • Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex
  • 2023
  • Ingår i: Elife. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain--age can be inferred from structural neuroimaging and compared to chronological age (brain--age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging--derived measures from the UK Biobank dataset (N=22,661) were used to predict brain--age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-ss, more advanced stages (AT) of AD pathology and APOE-e4 status. Brain--age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain--age delta as a non-invasive marker of biological brain aging in non--demented individuals with abnormal levels of biomarkers of AD and axonal injury.
  •  
9.
  • Deming, Y., et al. (författare)
  • The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk
  • 2019
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 11:505
  • Tidskriftsartikel (refereegranskat)abstract
    • Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been associated with Alzheimer's disease (AD). TREM2 plays a critical role in microglial activation, survival, and phagocytosis; however, the pathophysiological role of sTREM2 in AD is not well understood. Understanding the role of sTREM2 in AD may reveal new pathological mechanisms and lead to the identification of therapeutic targets. We performed a genome-wide association study (GWAS) to identify genetic modifiers of CSF sTREM2 obtained from the Alzheimer's Disease Neuroimaging Initiative. Common variants in the membrane-spanning 4-domains subfamily A (MS4A) gene region were associated with CSF sTREM2 concentrations (rs1582763; P = 1.15 x 10(-15)); this was replicated in independent datasets. The variants associated with increased CSF sTREM2 concentrations were associated with reduced AD risk and delayed age at onset of disease. The single-nucleotide polymorphism rs1582763 modified expression of the MS4A4A and MS4A6A genes in multiple tissues, suggesting that one or both of these genes are important for modulating sTREM2 production. Using human macrophages as a proxy for microglia, we found that MS4A4A and TREM2 colocalized on lipid rafts at the plasma membrane, that sTREM2 increased with MS4A4A overexpression, and that silencing of MS4A4A reduced sTREM2 production. These genetic, molecular, and cellular findings suggest that MS4A4A modulates sTREM2. These findings also provide a mechanistic explanation for the original GWAS signal in the MS4A locus for AD risk and indicate that TREM2 may be involved in AD pathogenesis not only in TREM2 risk-variant carriers but also in those with sporadic disease.
  •  
10.
  • Fauria, K., et al. (författare)
  • Exploring cognitive and biological correlates of sleep quality and their potential links with Alzheimer's disease (ALFASleep project): protocol for an observational study
  • 2022
  • Ingår i: Bmj Open. - : BMJ. - 2044-6055. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: The growing worldwide prevalence of Alzheimer's disease (AD) and the lack of effective treatments pose a dire medical challenge. Sleep disruption is also prevalent in the ageing population and is increasingly recognised as a risk factor and an early sign of AD. The ALFASleep project aims to characterise sleep with subjective and objective measurements in cognitively unimpaired middle/late middle-aged adults at increased risk of AD who are phenotyped with fluid and neuroimaging AD biomarkers. This will contribute to a better understanding of the pathophysiological mechanisms linking sleep with AD, thereby paving the way for the development of non-invasive biomarkers and preventive strategies targeting sleep. METHODS AND ANALYSIS: We will invite 200 participants enrolled in the ALFA+ (for ALzheimer and FAmilies) prospective observational study to join the ALFASleep study. ALFA+ participants are cognitively unimpaired middle-aged/late middle-aged adults who are followed up every 3 years with a comprehensive set of evaluations including neuropsychological tests, blood and cerebrospinal fluid (CSF) sampling, and MRI and positron emission tomography acquisition. ALFASleep participants will be additionally characterised with actigraphy and CSF-orexin-A measurements, and a subset (n=90) will undergo overnight polysomnography. We will test associations of sleep measurements and CSF-orexin-A with fluid biomarkers of AD and glial activation, neuroimaging outcomes and cognitive performance. In case we found any associations, we will test whether changes in AD and/or glial activation markers mediate the association between sleep and neuroimaging or cognitive outcomes and whether sleep mediates associations between CSF-orexin-A and AD biomarkers. ETHICS AND DISSEMINATION: The ALFASleep study protocol has been approved by the independent Ethics Committee Parc de Salut Mar, Barcelona (2018/8207/I). All participants have signed a written informed consent before their inclusion (approved by the same ethics committee). Study findings will be presented at national and international conferences and submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04932473.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy